Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity

نویسندگان

  • Emanuela Basaldella
  • Aya Takeoka
  • Markus Sigrist
  • Silvia Arber
چکیده

The ability to continuously adjust posture and balance is necessary for reliable motor behavior. Vestibular and proprioceptive systems influence postural adjustments during movement by signaling functionally complementary sensory information. Using viral tracing and mouse genetics, we reveal two patterns of synaptic specificity between brainstem vestibular neurons and spinal motor neurons, established through distinct mechanisms. First, vestibular input targets preferentially extensor over flexor motor pools, a pattern established by developmental refinement in part controlled by vestibular signaling. Second, vestibular input targets slow-twitch over fast motor neuron subtypes within extensor pools, while proprioceptors exhibit inversely correlated connectivity profiles. Genetic manipulations affecting the functionality of proprioceptive feedback circuits lead to adjustments in vestibular input to motor neuron subtypes counterbalancing the imposed changes, without changing the sparse vestibular input to flexor pools. Thus, two sensory signaling systems interact to establish complementary synaptic input patterns to the final site of motor output processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From genes to circuits and behaviors

Neuropeptide signaling remodels the composition of a chemosensory circuit and shapes behavior in Caenorhabditis elegans. We reported that the ASE left (ASEL) salt sensory neuron uses a proprotein convertase, BLI-4, to cleave the insulin-like peptide INS-6. INS-6 peptides are released from the ASEL neuron in response to large, but not small changes in salt stimuli. Fast INS-6 signaling functiona...

متن کامل

Gaze Stabilization by Efference Copy Signaling without Sensory Feedback during Vertebrate Locomotion

BACKGROUND Self-generated body movements require compensatory eye and head adjustments in order to avoid perturbation of visual information processing. Retinal image stabilization is traditionally ascribed to the transformation of visuovestibular signals into appropriate extraocular motor commands for compensatory ocular movements. During locomotion, however, intrinsic "efference copies" of the...

متن کامل

Disruption of Learned Timing in P/Q Calcium Channel Mutants

To optimize motor performance, both the amplitude and temporal properties of movements should be modifiable by motor learning. Here we report that the modification of movement timing is highly dependent on signaling through P/Q-type voltage-dependent calcium channels. Two lines of mutant mice heterozygous for P/Q-type voltage-dependent calcium channels exhibited impaired plasticity of eye movem...

متن کامل

Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex

Cerebellar long-term depression (LTD) is a model system for neuronal information storage that has an absolute requirement for activation of protein kinase C (PKC). It has been claimed to underlie several forms of cerebellar motor learning. Previous studies using various knockout mice (mGluR1, GluRdelta2, glial fibrillary acidic protein) have supported this claim; however, this work has suffered...

متن کامل

Impairment of LTD and cerebellar learning by Purkinje cell–specific ablation of cGMP-dependent protein kinase I

The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2015